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Abstract. Many dynamical systems are thought to exhibit windows of attracting periodic
behaviour for arbitrarily small perturbations from parameter values yielding chaotic attractors.
This structural instability of chaos is particularly well documented and understood for the case
of the one-dimensional quadratic map. In this paper we attempt to numerically characterize the
global parameter-space structure of the dense set of periodic ‘windows’ occurring in the chaotic
regime of the quadratic map. In particular, we use scaling techniques to extract information on
the probability distribution of window parameter widths as a function of period and location of
the window in parameter space. We also use this information to obtain the uncertainty exponent
which is a quantity that globally characterizes the ability to identify chaos in the presence of
small parameter uncertainties.

1. Introduction

The gquadratic map may be expressed in the form
Xn4+1 = )C3 -C. (1)

Because of its relative simplicity and ease of numerical study, this map has proven to
be an invaluable model for revealing various kinds of characteristic nonlinear dynamical
behaviour (e.g. period-doubling cascades, pairwise merging of chaotic bands, intermittency,
crises, etc). (We choose to write the quadratic map in the form (1) because &d, the

period one attractor is at = 0 and is superstable (i.e,,1 = x, and d,1/dx, = 0 at

x, = C = 0). This will prove convenient in a later discussion.) There is a unique bounded
attractor for (1) for

2>C> -3

Jacobson[1] proved that the set 6fvalues for which the attractor of (1) is chaotic has
positive Lebesgue measure. More recently, Graczyk @wihtek[2] proved that the set
of C values corresponding to attracting periodic orbits is dense in the set of cl@otic
values. These periodic orbits occur in ‘windows’ in parameter space. A periwthdow
begins agC increases through a lower critical value at which a pepadngent bifurcation
creates a stable (attracting) peripdorbit and an unstable (repelling) perigdorbit. As

C increases, the attracting perigdorbit goes through a period-doubling cascade to chaos,
and the attractor apparently widens intonarrow chaotic bands through which the orbit
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consecutively cycles. The window ends @sincreases through an upper critical value
at which thep orbit points of the unstable period orbit, created at the original tangent
bifurcation, first touch the edges of thechaotic bands of the chaotic attractordiasis).

The largest and most familiar example of a window is the famous period-three window
of (1), which occupies the interval 15 < C < 1.79.... For largep, the numberN, of
windows with periodp in the entire range 2 C > —;11 is large,

N, = (2" —2)/(2p) (2

and this approximate expression becomes exagti# prime (e.g. see [3]).

In this paper we attempt to characterize statistically the global parameter-space structure
of the dense set of windows in the chaotic regime of (1). In particular, we seek information
on the largep behaviour of the probability distribution of window widths i@ as a
function of the period and the location of the window in parameter gpadéée also use
this information to obtain the uncertainty exponent (defined in section 2.2). In addressing
these questions our approach will be to combine numerical analysis with scaling techniques.
While it is not clear from our numerical results whether or not the scaling hypothesis we
use is true exactly, it will be shown that our hypothesis holds at least approximately and
that it provides a very useful way of organizing the data.

2. Background

2.1. The width of a window

We may regard the attractor within a window as always residing inarrow intervals
in x. Throughout the entire range of the paramafewithin a given periodp window,
the attracting orbit, whether it is periodic or chaotic, consecutively cycles through these
p harrow x intervals. As shown below, these intervals tend to become narrower, and the
window parameter width becomes smaller, jasncreases. Of the intervals inx, one
straddles the critical point (i.e. the maximum of the map functios; O for (1)), while the
other (p — 1) intervals are typically [5] located away from the critical point.

We now use the above discussion to obtain an estimate [5] of the window parameter
width AC,. We consider thepth iterate of the map,,, = F”(x,, C) for C in a period
p window andx, in the centralc-interval that straddles the critical point. We expand the
equationx,, = F” (x,, C), for x, andx,., small (they are in the narrow interval about
x = 0) andC near its valueCy, at superstability of the periogl attracting orbit. Because
of the narrowness of thép — 1) intervals that are away from the critical point, we can use
a linear approximation to the map in those intervals; the full quadratic (1) must be retained
for the central interval. One thus obtains [5]

Xntp = Ap[xZ — (C = Cyy)] ®3)

where A, = A1As...A,_1 is the product of the map slopes, = 2x,4;, in the (p — 1)
noncentral intervals Since we are in the region d@f values where chaos is possible, the
A; are typically of magnitude larger than one, and, consequely| is large for large
p. While A, varies withx, and with C through the parameter range of the window, this

1 A different approach is used in Post and Capel [4] where a precise estimate of the width of a window in terms
of the location (in both parameter and phase space) of the superstable orbit within the window is obtained, and
this estimate is used to study the scaling of widths of particular families of windows.

1 More accurately, equation (3) should read 1 = A,[x? — B(C — Cy.)], where is of order 1 and is given by
B=1+ kl_l + AT 4 (Mara. . .A,,,l)*l. Since we will be dealing with the logarithm of the window
width for small window widths, the factgs of order 1 is not important and for simplicity we set it to 1.
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variation is small for narrow windows. Thus we have treatgdas if it were a constant in
the window. For definiteness we, henceforth, takeas the value at the superstable period
p orbit in the window. ;

Introducingx = A,x andC, = Ai(C — Cyy), €quation (3) becomes

Fupp =72 -C,

which is identical in form to equation (1). Thus one expects (and numerically observes)
that, asC is increased, the bifurcation diagram restricted to the central band of a window,
when magnified, approximately replicates the bifurcation diagram of (1) in the entire interval
22C> —;11. (The period-one attractor of (1) is born by a tangent bifurcatioi asreases

through—%, and the final single-band chaotic attractor of (1) is destroyed by a crigis as
increases through 2.) Furthermore, unnormalizing, we find that the window width is

AC, = (DA, 4)

while thex width of the central interval scales as,. SinceA, becomes large for large
p, these widths become small. It is argued in [5] that the above analysis is good save for an
exponentially (inp) small fraction of exceptional windows, and that, for the nonexceptional
windows, results, such as (4), are true asymptotically for large

Since each window replicates the bifurcation diagram of the map (1) over the full range
2>C > —211, there are an infinite number of windows of period divisible poyn each
period p window. We refer to those windows that do not appear within another window as
primary windows. The fraction of thev, windows of periodp (see equation (2)) that are
not primary may be shown to approach zergpas> +oo (this fraction is trivially zero for
p a prime number).

2.2. Uncertainty exponent

The uncertainty exponent (originally introduced [6] to describe fractal basin boundaries) can
be applied to the sef. of C values for which equation (1) yields a chaotic attractor. Say
we randomly choose a value 6f in the setS. (where the random choice is with respect
to the Lebesgue measure &f). Now choose a second value 6fby perturbing the first
value by the addition of a small randomly chosen numfewxheres is chosen at random
with uniform probability density in the intervate < § < €. Let P(e) be the probability
that the perturbed value yields a periodic (rather than a chaotic) attractor. The uncertainty
exponent is then defined as

o = lim 1097 ()

e~0 loge

In more concrete terms? (¢) is the probability of making an error when one predicts that
the orbit is chaotic given & value with measurement uncertainty and o gives thee
scaling of this error probabilityP (¢) ~ €.

Another, slightly different, way of defining the uncertainty exponent is as follows. Let
S.(¢) be the set created by fattenifiy by the amount. By this we mean that we take
the original set plus all points within a distanedrom S.. The other uncertainty exponent

definition is then given by
o = lim 129 V15l
e—0 loge

(6)

whereV denotes Lebesgue measure ahtk) = S.(¢) — S, is what remains if the original
set S, is deleted from the fattened s&t(e).
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The connection between (5) and (6) can be understood as follows. Coxgiderd
C, chosen at random with respect to Lebesgue measure, subject to the condition that
|C1 — C3| < e. Then P(e) represents the conditional probability th@s € S.(¢) given
that C; € S.. Let P(e) represent the conditional probability thay € S, given that
C; € S.(¢). Then

P(e) = ﬁ(e)ﬂ.
V[Sc(e)]

It follows that the limits in (5) and (6) are the same provided ti*4t) approaches a
positive constant as — 0. Thinking of S. as the complement of the periodic windows
in parameter space, evefi € S.(¢) lies within € of the boundary of the window that
contains it. Considering all suafi, within a given window, and alC; within ¢ of C,, the
probability thatC; is outside the given window is at Iea%t It is possible thatC; lies in
another window, but both numerical evidence and the fact $hdtas positive Lebesgue
measure suggest that for smajlif C; is outside a window but withir of its boundary,
then the probability tha€; € S. is high. It then follows thatP (¢) stays close to or above
;11 ase — 0, and that (5) and (6) are equivalent f§y

In [7] Farmer found a scaling by calculating teranges of a large number of primary
windows. His scaling was obtained by a procedure that essentially approximadss
defined by (6). He obtaing = 0.45+ 0.04.

In [8] « was numerically evaluated from the definition (5) by perturbihgalues in
S. by £e. Whether the resulting orbits are chaotic or not was determined from the sign
of the numerically calculated Lyapunov exponent. The fraction of orbitS.igielding a
nonchaotic perturbed orbit is then calculated using a large number of randomly chosen initial
conditions inS.. The scaling of this fraction with decreasiaghen gives the uncertainty
exponent. The resulting estimate ffor the quadratic map [8] wag = 0.41.

3. Heuristic analysis
Based onA, we can define an effectiveindow Lyapunov exponefiir each window,

h, =

1 10al,| ()
where we evaluate\, at superstability. From equation (4) knowledge of the statistics of
ﬁp is equivalent to knowledge of the statistics of the window widths.

The statistics of finite-time Lyapunov exponents have been studied for chaotic maps
with fixed parameter values [9]. In this case, one imagines choosing an initial condition
x1 at random with respect to the natural measure on the chaotic attractor of the (fixed)
map. Using this initial condition one next calculates the finite time Lyapunov exponent
h, = n~tlog|F'(x1)F'(x3) ... F'(x,)|, wherexy, xa, ..., x, are the firstn points of the
chaotic orbit from the randomly chosen. It is then argued that the probability distribution
function of the random variablg, is [9]

nH"(h)
2

for large n, where H(h) = 0 and the functionH (#) > 0 is concave up; in particular,
H'"(h) > 0 and H (h) increases for increasingp — h|. The utility of equation (8) is that it
expresses the functioR, (), which depends on thevo variablesr and #, in terms of a
function of asingle variable, H (k). Note that in the limit: — +o00, equation (8) yields

P,(h) =

expl—nH (h)] (8)
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Figure 1. Topological entropyk; and Lyapunov exponenit versus the parametef. The
Lyapunov exponent was computed for 2000 evenly spaced parameter values §sitegations
for each value; only positive exponents are shown.

the Dirac distributions(h — k) so that with probability 1 the limit a8 — +oo of 4, is h.
Thus the quantity: is what is conventionally callethe Lyapunov exponent. Equation (8)
has been tested numerically with good results for a number of chaotic processes.

We would like to obtain something similar to equation (8) for the window Lyapunov
exponents given by equation (7). The reason we cannot apply equation (8) directly is that
it is obtained for a fixed map and a randomly chosen initial condition. In contrast, we take
our initial condition atx; = O for C at its superstable point in a perigdwindow. What we
desire is to choose one of ¥, > 1 windows of periodp at random and to hypothesize
a probability distribution like equation (8) fdi,,, the argument being that, for large
the periodic orbit paths with differer@ values are like chaotic orbits from different initial
conditions except that at the end the orbit happens to retusnsd. This, however, does
not yet make sense as can be seen from figure 1, which shows the Lyapunov exponent
and topological entropyi; of (1) versusC. The Lyapunov exponerit varies erratically
with C as implied by the denseness of attracting periodic ordits< 0) in the set ofC
values yielding chaog: > 0). Note, however, that the topological entropy, which gives
a more global measure of chaos, varies continuously @itirhus, from thei; versusC
plot, one expects inherent continuoisdependence in the distribution functionfqr that
is not included in (8). On the other hand, it would seem reasonable to take as a working
assumption the supposition th@ for different periodp windows fluctuates about a value
proportional toh7, where, of course;r has theC dependence in figure 1 (it may be shown
thathy is constant in a window). The reasoning here is thaprovides a robust measure
of the stretching, whilé: » Characterizes the stretching in the window (with the central band
deleted). This suggests introducing the normalization

H=h,/hr. 9)

Furthermore, since we deem the net stretching over a given time to be the relevant measure
of time (rather than the number of iteraesr sg, we introduce the normalized period

m = phr. (10)



7072 B R Hunt and E Ott

In analogy to (8) we now hypothesize a scaling form fyr(H), the probability distribution
of H at fixed largem,

G"(H)
2tm
where the properties afi(H) are the same as those stated f¢h) in (8). Thus all the
smooth C dependence of the variation of the character of the map is subsumed in the
normalizations (9) and (10) and tliedependence oi;. The worth of our hypothesis (11)
is ultimately dependent on how well it models the data (see section 4).
We now explore the consequences of (11). In particular, we use (11) to obtain the
uncertainty exponent in terms of G(H). A key point is that the number of windows with
period p in the rangeC < C’ scales as

N,(C < C') ~ explphr (C")]. (12)

(Note that forC’ = 2, we haveh;y = In2, so that (12) givesv, ~ 27 in agreement with

(2).) Consider the sefy of C values in windows. Since the Lebesgue measur€ of
values yielding periodic attractors within a window is larger than the Lebesgue measure of
C values yielding chaos within the window, we estimatgS.(¢)] in (6) as the Lebesgue
measure of points Sy that are withine of a chaotic parameter value lying outside all
windows. Making use of our scaling hypothesis (11), we haveCfon the rangeC < C’

Pu(H) =

exp[—mG (H)] (1D

V[S.(e)] ~ Zeﬂhr / Py, (H) min(e, =277y d (13)
p=1 0
wherehy = hr(C'), € < 1, and we have used (4), (7) and (9) to estimate the window
width as

AC, ~ exp(—2phr'H) (14)

(the result forx will turn out to be independent @&’; i.e. independent ot (C’)). The term
min(e, 2771 arises because a window of widthC, < € is completely filled by the
fattening (yielding a contribution to the Lebesgue measurA@f ~ exp(—2hyH)), while
a window of widthAC,, > ¢ is only filled by an amount of order (yielding a contribution
of ordere to the Lebesgue measure).

Approximating the sum ovep as an integral and introducing the scaling variatle
equation (13) becomes

V[S.(e)] ~ / dm / dH expn(1 — G(H))]lmin(e, e 2"™). (15)
0 0
Consider the dividing curve = exp(—2m™H) or mH = %Iog(l/e) in the (m, H) plane (see

figure 2).
Below the dividing curve the integrand is

I =eexpm(l— G(H))] (16)
while above the dividing curve the integrand is
I. = expn(1— 2H — G(H))]. (17)

For smalle the main contribution to the integral (15) comes from a small region of the
(m, H) plane in the vicinity of the maximum value of the integrand. Thus we need to
determine the location of that maximum. Considerim@s constant/_ is maximized with
respect tgH at the value ofH for which G(H) is minimum. This value is, by definition,
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A

dividing curve

Figure 2. The dividing curvem™ = 1 log(1/e) for the integrand of (15) and the values &f
discussed in locating the maximum of the integrand.

H = ‘H. Similarly, from the fact thatG () is a concave-up function & we have thatl..
is maximized with respect té{ with m fixed atH = H, whereH, is the solution of

G'(Ha) = -2

andG’ = dG/dH. SinceG is concave upH, < H; the situation is as depicted in figure 2.
The function /. decreases monotonically as one moves horizontally away (either to the
left or to the right) from the vertical liné{ = . The function/l. likewise decreases
monotonically as one moves horizontally away from the vertical le= H,. Thus
for fixed m the integrand mi@., X.) is maximized as a function of{ on the curve
ABDE highlighted in figure 2. On the segment DE, we hdye= ¢€", which increases
monotonically withm. On the segment AB, we have = expm(l — 2H, — G(Ha))],
and we must assume [ 2H, — G(H4)] < 0 for convergence of the integral (15); thus
on the segment AB, the quantify increases monotonically as is decreased. The above
discussed properties @f andl. have the consequence that the maximum of the integrand
lies on the dividing curvem™ = log(1/¢)*?, somewhere between poins and D. We
label this maximum poin€ in figure 2. On the dividing curve we express the integrand in
terms of H by substitutingn = H~1log(1/¢)Y/? into either (16) or (17):

[ = 1-[1-Ga)/ @)

The maximum of the above expression is obtaine@{at H., whereHc is the solution
of

1-G(He) + HeG' (He) =0. (18)
EstimatingV[S.(¢€)] as V[S.(€)] ~ €¥, we have
. 1-G(Ho)

An an example, we now consider the case whe(#) is parabolic @,,(H) is Gaussian),
G(H) = (H — H)?/(28*H?) (20)
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whereé denotes the relative standard deviation of fluctuatior® iftom the average value
H. Equations (18)—(20) yield
1
= s vioo® 1)
As a point of reference, if we neglect fluctuatio@@s= 0) and take’, to be equal toir
(H = 1), we obtaine = % This value is not too far off the numerically obtained values in
[7] and [8]. To do better we now turn to numerical experiments.

4. Results of numerical experiments

In order to test the hypothesis (11), we performed an exhaustive search for windows of the
guadratic map on the interval8437... < C < 2 where the attractor is a single interval
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for C outside of the windows. We computed the window widtl€', and entropyir of
windows of periodp up to 40 and width at least 8. There are approximately 2.75
million such windows. Recall that we have estimated in (14) thal, = exp(—2phrH),
and recall thain = phy. Rather than measufé directly for these windows, we computed
the quantity

—In(AC,) —In(AC))
 2phy 2m
which approximate®{. Thus we test whetherhas the same type of probability distribution,
for fixed m, as given by (11) fof, namely that
GN(Z)
2rm

In order to test the validity of (23) we divided the possible valuesnointo bins of
width 0.5 and examined the statistics pfor windows in each birgm — 0.5, m]. Figures 3
and 4 show respectively the computed méaand variancer? of z as a function ofn for
7<m< 14,

The reasons for limiting our considerations to the rang€ i < 14 are as follows.
Form < 7, the number of windows per bin drops below 100, and the computed statistics
become unreliable. On the other hand, for> 14 it is possible for the periogg = m/hr
of the window to exceed 40 because the entrbpycan be as low aéin2)/2 at the lower
endpoint of theC interval we consider. Also fom near 14 the windows with width near
1071° start to become significant in number; thus our limitations on the period and window
width begin to bias the statistics asincreases past 14.

From figure 3 we see that as increases, the mean value does seem to be approaching
a value 1< 7z < 1.1 which is independent ofz, in accordance with our hypothesis.
The predicted distribution also has the property that the variaicshould vary inversely
with m, and figure 4, though perhaps not conclusive, is consistent with the approximation
02 =0.05/m.

In section 3 we estimated the uncertainty exporermf the chaotic parameter sé&t
in terms of the mean and standard deviation of the distributionHfprassuming thaG
is quadratic. Approximating the statistics Bf by those we measured far we plug the
valuesH = 1.05+ 0.05 ands? = 0.05+ 0.02 into (21). The result isx = 0.51+ 0.03,
which is in line with the prediction that is close to%.

(22)

Pu(z) =

exp[-mG(z)]. (23)

Remark. Note that in [8] the set for which the uncertainty exponent is calculated is the
set of C values yielding chaos, while in [7] it is the set 6f values that yield chaos and

are not in primary windows. (See the discussion of [7, 8] at the end of section 2) It is not
clear whether or not one should expect the sanfer these two sets. In our computation

of « we have used the set of [7]; that is, we considered only chaotic behaviour that is not
in a primary window. Since we also restricted consideration to the ran@ebaftween the
merging point of the two-band chaotic attractor and the point of the final cdsis R), our
choice is equivalent to consideringvalues for which there is a one-piece chaotic attractor.

5. Discussion

For the quadratic map we have introduced the idea of a ‘normalized petied’ph; of a

periodic window, wherep is the period and: 7 is the topological entropy of the dynamics
in the window. Whereas windows with a given peripdhave tremendous variation in
their widths, windows with similar values ofi have much greater uniformity in width.
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Specifically, (22) and (23) imply that for a given, the natural logarithm of the window
width has expected value near2m and standard deviation proportional {gm. Thus
grouping the windows with common values mf provides a useful means for measuring
the statistics of window widths. Further, the nature of these statistics allowed us to derive
in section 3 the uncertainty exponentof the chaotic parameter set in terms of quantities
which are measurable from window data, and our results in section 4 agree with earlier
measurements which indicate thais in the vicinity of %

Though all of our analysis has concerned the quadratic map, we expect that similar
scaling results for window widths apply to other one-parameter families of one-dimensional
maps with a single quadratic maximum.
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