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Abstract. Many dynamical systems are thought to exhibit windows of attracting periodic
behaviour for arbitrarily small perturbations from parameter values yielding chaotic attractors.
This structural instability of chaos is particularly well documented and understood for the case
of the one-dimensional quadratic map. In this paper we attempt to numerically characterize the
global parameter-space structure of the dense set of periodic ‘windows’ occurring in the chaotic
regime of the quadratic map. In particular, we use scaling techniques to extract information on
the probability distribution of window parameter widths as a function of period and location of
the window in parameter space. We also use this information to obtain the uncertainty exponent
which is a quantity that globally characterizes the ability to identify chaos in the presence of
small parameter uncertainties.

1. Introduction

The quadratic map may be expressed in the form

xn+1 = x2
n − C. (1)

Because of its relative simplicity and ease of numerical study, this map has proven to
be an invaluable model for revealing various kinds of characteristic nonlinear dynamical
behaviour (e.g. period-doubling cascades, pairwise merging of chaotic bands, intermittency,
crises, etc). (We choose to write the quadratic map in the form (1) because, forC = 0, the
period one attractor is atx = 0 and is superstable (i.e.xn+1 = xn and dxn+1/dxn = 0 at
xn = C = 0). This will prove convenient in a later discussion.) There is a unique bounded
attractor for (1) for

2> C > − 1
4.

Jacobson[1] proved that the set ofC values for which the attractor of (1) is chaotic has
positive Lebesgue measure. More recently, Graczyk andŚwia̧tek[2] proved that the set
of C values corresponding to attracting periodic orbits is dense in the set of chaoticC

values. These periodic orbits occur in ‘windows’ in parameter space. A periodp window
begins asC increases through a lower critical value at which a periodp tangent bifurcation
creates a stable (attracting) periodp orbit and an unstable (repelling) periodp orbit. As
C increases, the attracting periodp orbit goes through a period-doubling cascade to chaos,
and the attractor apparently widens intop narrow chaotic bands through which the orbit
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consecutively cycles. The window ends asC increases through an upper critical value
at which thep orbit points of the unstable periodp orbit, created at the original tangent
bifurcation, first touch the edges of thep chaotic bands of the chaotic attractor (acrisis).
The largest and most familiar example of a window is the famous period-three window
of (1), which occupies the interval 1.75 6 C 6 1.79. . .. For largep, the numberNp of
windows with periodp in the entire range 2> C > − 1

4 is large,

Np ∼= (2p − 2)/(2p) (2)

and this approximate expression becomes exact ifp is prime (e.g. see [3]).
In this paper we attempt to characterize statistically the global parameter-space structure

of the dense set of windows in the chaotic regime of (1). In particular, we seek information
on the largep behaviour of the probability distribution of window widths inC as a
function of the period and the location of the window in parameter space†. We also use
this information to obtain the uncertainty exponent (defined in section 2.2). In addressing
these questions our approach will be to combine numerical analysis with scaling techniques.
While it is not clear from our numerical results whether or not the scaling hypothesis we
use is true exactly, it will be shown that our hypothesis holds at least approximately and
that it provides a very useful way of organizing the data.

2. Background

2.1. The width of a window

We may regard the attractor within a window as always residing inp narrow intervals
in x. Throughout the entire range of the parameterC within a given periodp window,
the attracting orbit, whether it is periodic or chaotic, consecutively cycles through these
p narrowx intervals. As shown below, these intervals tend to become narrower, and the
window parameter width becomes smaller, asp increases. Of thep intervals inx, one
straddles the critical point (i.e. the maximum of the map function,x = 0 for (1)), while the
other (p − 1) intervals are typically [5] located away from the critical point.

We now use the above discussion to obtain an estimate [5] of the window parameter
width 1Cp. We consider thepth iterate of the mapxn+p = F (p)(xn, C) for C in a period
p window andxn in the centralx-interval that straddles the critical point. We expand the
equationxn+p = F (p)(xn, C), for xn andxn+p small (they are in the narrow interval about
x = 0) andC near its valueCss at superstability of the periodp attracting orbit. Because
of the narrowness of the(p− 1) intervals that are away from the critical point, we can use
a linear approximation to the map in those intervals; the full quadratic (1) must be retained
for the central interval. One thus obtains [5]

xn+p ∼= 3p[x2
n − (C − Css)] (3)

where3p = λ1λ2 . . . λp−1 is the product of the map slopes,λi = 2xn+i , in the (p − 1)
noncentral intervals‡. Since we are in the region ofC values where chaos is possible, the
λi are typically of magnitude larger than one, and, consequently,|3p| is large for large
p. While 3p varies withxn and withC through the parameter range of the window, this

† A different approach is used in Post and Capel [4] where a precise estimate of the width of a window in terms
of the location (in both parameter and phase space) of the superstable orbit within the window is obtained, and
this estimate is used to study the scaling of widths of particular families of windows.
‡ More accurately, equation (3) should readxn+1 ∼= 3p [x2

n − β(C −Csc)], whereβ is of order 1 and is given by
β = 1+ λ−1

1 + (λ1λ2)
−1 + · · · + (λ1λ2 . . . λp−1)

−1. Since we will be dealing with the logarithm of the window
width for small window widths, the factorβ of order 1 is not important and for simplicity we set it to 1.
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variation is small for narrow windows. Thus we have treated3p as if it were a constant in
the window. For definiteness we, henceforth, take3p as the value at the superstable period
p orbit in the window.

Introducingx̃ = 3px and C̃p = 32
p(C − Css), equation (3) becomes

x̃n+p ∼= x̃2
n − C̃p

which is identical in form to equation (1). Thus one expects (and numerically observes)
that, asC is increased, the bifurcation diagram restricted to the central band of a window,
when magnified, approximately replicates the bifurcation diagram of (1) in the entire interval
2> C > − 1

4. (The period-one attractor of (1) is born by a tangent bifurcation asC increases
through− 1

4, and the final single-band chaotic attractor of (1) is destroyed by a crisis asC

increases through 2.) Furthermore, unnormalizing, we find that the window width is

1Cp ∼= ( 9
4)3

−2
p (4)

while thex width of the central interval scales as3−1
p . Since3p becomes large for large

p, these widths become small. It is argued in [5] that the above analysis is good save for an
exponentially (inp) small fraction of exceptional windows, and that, for the nonexceptional
windows, results, such as (4), are true asymptotically for largep.

Since each window replicates the bifurcation diagram of the map (1) over the full range
2 > C > − 1

4, there are an infinite number of windows of period divisible byp in each
periodp window. We refer to those windows that do not appear within another window as
primary windows. The fraction of theNp windows of periodp (see equation (2)) that are
not primary may be shown to approach zero asp→+∞ (this fraction is trivially zero for
p a prime number).

2.2. Uncertainty exponent

The uncertainty exponent (originally introduced [6] to describe fractal basin boundaries) can
be applied to the setSc of C values for which equation (1) yields a chaotic attractor. Say
we randomly choose a value ofC in the setSc (where the random choice is with respect
to the Lebesgue measure ofSc). Now choose a second value ofC by perturbing the first
value by the addition of a small randomly chosen numberδ, whereδ is chosen at random
with uniform probability density in the interval−ε 6 δ 6 ε. Let P̄ (ε) be the probability
that the perturbed value yields a periodic (rather than a chaotic) attractor. The uncertainty
exponent is then defined as

α = lim
ε→0

log P̄ (ε)

logε
. (5)

In more concrete terms,̄P(ε) is the probability of making an error when one predicts that
the orbit is chaotic given aC value with measurement uncertaintyε, andα gives theε
scaling of this error probability,̄P(ε) ∼ εα.

Another, slightly different, way of defining the uncertainty exponent is as follows. Let
Sc(ε) be the set created by fatteningSc by the amountε. By this we mean that we take
the original set plus all points within a distanceε from Sc. The other uncertainty exponent
definition is then given by

α = lim
ε→0

logV [S̄c(ε)]

logε
(6)

whereV denotes Lebesgue measure andS̄c(ε) = Sc(ε)− Sc is what remains if the original
setSc is deleted from the fattened setSc(ε).
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The connection between (5) and (6) can be understood as follows. ConsiderC1 and
C2 chosen at random with respect to Lebesgue measure, subject to the condition that
|C1 − C2| 6 ε. Then P̄ (ε) represents the conditional probability thatC2 ∈ S̄c(ε) given
that C1 ∈ Sc. Let P̃ (ε) represent the conditional probability thatC1 ∈ Sc given that
C2 ∈ S̄c(ε). Then

P̃ (ε) = P̄ (ε) V [Sc]

V [S̄c(ε)]
.

It follows that the limits in (5) and (6) are the same provided thatP̃ (ε) approaches a
positive constant asε → 0. Thinking of Sc as the complement of the periodic windows
in parameter space, everyC2 ∈ S̄c(ε) lies within ε of the boundary of the window that
contains it. Considering all suchC2 within a given window, and allC1 within ε of C2, the
probability thatC1 is outside the given window is at least1

4. It is possible thatC1 lies in
another window, but both numerical evidence and the fact thatSc has positive Lebesgue
measure suggest that for smallε, if C1 is outside a window but withinε of its boundary,
then the probability thatC1 ∈ Sc is high. It then follows thatP̃ (ε) stays close to or above
1
4 asε → 0, and that (5) and (6) are equivalent forSc.

In [7] Farmer found a scaling by calculating theC ranges of a large number of primary
windows. His scaling was obtained by a procedure that essentially approximatesα as
defined by (6). He obtainsα ∼= 0.45± 0.04.

In [8] α was numerically evaluated from the definition (5) by perturbingC values in
Sc by ±ε. Whether the resulting orbits are chaotic or not was determined from the sign
of the numerically calculated Lyapunov exponent. The fraction of orbits inSc yielding a
nonchaotic perturbed orbit is then calculated using a large number of randomly chosen initial
conditions inSc. The scaling of this fraction with decreasingε then gives the uncertainty
exponent. The resulting estimate ofα for the quadratic map [8] wasα ∼= 0.41.

3. Heuristic analysis

Based on3p we can define an effectivewindow Lyapunov exponentfor each window,

h̃p = 1

p − 1
log |3p| (7)

where we evaluate3p at superstability. From equation (4) knowledge of the statistics of
h̃p is equivalent to knowledge of the statistics of the window widths.

The statistics of finite-time Lyapunov exponents have been studied for chaotic maps
with fixed parameter values [9]. In this case, one imagines choosing an initial condition
x1 at random with respect to the natural measure on the chaotic attractor of the (fixed)
map. Using this initial condition one next calculates the finite time Lyapunov exponent
hn = n−1 log |F ′(x1)F

′(x2) . . . F
′(xn)|, wherex1, x2, . . . , xn are the firstn points of the

chaotic orbit from the randomly chosenx1. It is then argued that the probability distribution
function of the random variablehn is [9]

Pn(h) ∼=
√
nH ′′(h̄)

2π
exp[−nH(h)] (8)

for large n, whereH(h̄) = 0 and the functionH(h) > 0 is concave up; in particular,
H ′′(h̄) > 0 andH(h) increases for increasing|h− h̄|. The utility of equation (8) is that it
expresses the functionPn(h), which depends on thetwo variablesn andh, in terms of a
function of asingle variable,H(h). Note that in the limitn → +∞, equation (8) yields
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Figure 1. Topological entropyhT and Lyapunov exponent̄h versus the parameterC. The
Lyapunov exponent was computed for 2000 evenly spaced parameter values using 108 iterations
for each value; only positive exponents are shown.

the Dirac distributionδ(h− h̄) so that with probability 1 the limit asn→+∞ of hn is h̄.
Thus the quantitȳh is what is conventionally calledthe Lyapunov exponent. Equation (8)
has been tested numerically with good results for a number of chaotic processes.

We would like to obtain something similar to equation (8) for the window Lyapunov
exponents given by equation (7). The reason we cannot apply equation (8) directly is that
it is obtained for a fixed map and a randomly chosen initial condition. In contrast, we take
our initial condition atx1 = 0 for C at its superstable point in a periodp window. What we
desire is to choose one of theNp � 1 windows of periodp at random and to hypothesize
a probability distribution like equation (8) for̃hp, the argument being that, for largep,
the periodic orbit paths with differentC values are like chaotic orbits from different initial
conditions except that at the end the orbit happens to return tox = 0. This, however, does
not yet make sense as can be seen from figure 1, which shows the Lyapunov exponenth̄

and topological entropyhT of (1) versusC. The Lyapunov exponent̄h varies erratically
with C as implied by the denseness of attracting periodic orbits(h̄ < 0) in the set ofC
values yielding chaos(h̄ > 0). Note, however, that the topological entropy, which gives
a more global measure of chaos, varies continuously withC. Thus, from thehT versusC
plot, one expects inherent continuousC dependence in the distribution function ofh̃p that
is not included in (8). On the other hand, it would seem reasonable to take as a working
assumption the supposition thath̃p for different periodp windows fluctuates about a value
proportional tohT , where, of course,hT has theC dependence in figure 1 (it may be shown
thathT is constant in a window). The reasoning here is thathT provides a robust measure
of the stretching, whilẽhp characterizes the stretching in the window (with the central band
deleted). This suggests introducing the normalization

H = h̃p/hT . (9)

Furthermore, since we deem the net stretching over a given time to be the relevant measure
of time (rather than the number of iteratesper se), we introduce the normalized period

m = phT . (10)
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In analogy to (8) we now hypothesize a scaling form forPm(H), the probability distribution
of H at fixed largem,

Pm(H) ∼=
√
G′′(H̄)
2πm

exp[−mG(H)] (11)

where the properties ofG(H) are the same as those stated forH(h) in (8). Thus all the
smoothC dependence of the variation of the character of the map is subsumed in the
normalizations (9) and (10) and theC dependence ofhT . The worth of our hypothesis (11)
is ultimately dependent on how well it models the data (see section 4).

We now explore the consequences of (11). In particular, we use (11) to obtain the
uncertainty exponentα in terms ofG(H). A key point is that the number of windows with
periodp in the rangeC 6 C ′ scales as

Np(C 6 C ′) ∼ exp[phT (C
′)]. (12)

(Note that forC ′ = 2, we havehT = ln 2, so that (12) givesNp ∼ 2p in agreement with
(2).) Consider the setSW of C values in windows. Since the Lebesgue measure ofC

values yielding periodic attractors within a window is larger than the Lebesgue measure of
C values yielding chaos within the window, we estimateV [S̄c(ε)] in (6) as the Lebesgue
measure of points inSW that are withinε of a chaotic parameter value lying outside all
windows. Making use of our scaling hypothesis (11), we have forC in the rangeC 6 C ′

V [S̄c(ε)] ∼
∞∑
p=1

ephT
∫ ∞

0
PphT (H)min(ε, e−2phTH) dH (13)

wherehT = hT (C
′), ε � 1, and we have used (4), (7) and (9) to estimate the window

width as

1Cp ∼ exp(−2phTH) (14)

(the result forα will turn out to be independent ofC ′; i.e. independent ofhT (C ′)). The term
min(ε, e−2phTH) arises because a window of width1Cp < ε is completely filled by theε
fattening (yielding a contribution to the Lebesgue measure of1Cp ∼ exp(−2hTH)), while
a window of width1Cp > ε is only filled by an amount of orderε (yielding a contribution
of orderε to the Lebesgue measure).

Approximating the sum overp as an integral and introducing the scaling variablem,
equation (13) becomes

V [S̄c(ε)] ∼
∫ ∞

0
dm

∫ ∞
0

dH exp[m(1−G(H))] min(ε, e−2mH). (15)

Consider the dividing curveε = exp(−2mH) ormH = 1
2 log(1/ε) in the (m,H) plane (see

figure 2).
Below the dividing curve the integrand is

I< = ε exp[m(1−G(H))] (16)

while above the dividing curve the integrand is

I> = exp[m(1− 2H−G(H))]. (17)

For small ε the main contribution to the integral (15) comes from a small region of the
(m,H) plane in the vicinity of the maximum value of the integrand. Thus we need to
determine the location of that maximum. Consideringm as constant,I< is maximized with
respect toH at the value ofH for which G(H) is minimum. This value is, by definition,
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Figure 2. The dividing curvemH = 1
2 log(1/ε) for the integrand of (15) and the values ofH

discussed in locating the maximum of the integrand.

H = H̄. Similarly, from the fact thatG(H) is a concave-up function ofH we have thatI>
is maximized with respect toH with m fixed atH = HA whereHA is the solution of

G′(HA) = −2

andG′ ≡ dG/dH. SinceG is concave up,HA < H̄; the situation is as depicted in figure 2.
The functionI< decreases monotonically as one moves horizontally away (either to the
left or to the right) from the vertical lineH = H̄. The functionI> likewise decreases
monotonically as one moves horizontally away from the vertical lineH = HA. Thus
for fixed m the integrand min(6<,6>) is maximized as a function ofH on the curve
ABDE highlighted in figure 2. On the segment DE, we haveI< = εem, which increases
monotonically withm. On the segment AB, we haveI> = exp[m(1− 2HA − G(HA))],
and we must assume [1− 2HA − G(HA)] < 0 for convergence of the integral (15); thus
on the segment AB, the quantityI> increases monotonically asm is decreased. The above
discussed properties ofI< andI> have the consequence that the maximum of the integrand
lies on the dividing curve,mH = log(1/ε)1/2, somewhere between pointsB andD. We
label this maximum pointC in figure 2. On the dividing curve we express the integrand in
terms ofH by substitutingm = H−1 log(1/ε)1/2 into either (16) or (17):

I = ε{1−[1−G(H)]/(2H)}.

The maximum of the above expression is obtained atH = HC , whereHC is the solution
of

1−G(HC)+HCG′(HC) = 0. (18)

EstimatingV [S̄c(ε)] asV [S̄c(ε)] ∼ εα, we have

α = 1− 1−G(HC)
2HC

. (19)

An an example, we now consider the case whereG(H) is parabolic (Pm(H) is Gaussian),

G(H) = (H− H̄)2/(2δ2H̄2) (20)
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Figure 3. Mean z̄ of normalized window widths versusm.

Figure 4. Varianceσ 2 of normalized window widths versusm.

whereδ denotes the relative standard deviation of fluctuations inH from the average value
H̄. Equations (18)–(20) yield

α = 1− 1

H̄(1+√1− 2δ2)
. (21)

As a point of reference, if we neglect fluctuations(δ = 0) and takehp to be equal tohT
(H̄ = 1), we obtainα = 1

2. This value is not too far off the numerically obtained values in
[7] and [8]. To do better we now turn to numerical experiments.

4. Results of numerical experiments

In order to test the hypothesis (11), we performed an exhaustive search for windows of the
quadratic map on the interval 1.5437. . . 6 C 6 2 where the attractor is a single interval
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for C outside of the windows. We computed the window width1Cp and entropyhT of
windows of periodp up to 40 and width at least 10−15. There are approximately 2.75
million such windows. Recall that we have estimated in (14) that1Cp ∼= exp(−2phTH),
and recall thatm = phT . Rather than measureH directly for these windows, we computed
the quantity

z = − ln(1Cp)

2phT
= − ln(1Cp)

2m
(22)

which approximatesH. Thus we test whetherz has the same type of probability distribution,
for fixedm, as given by (11) forH, namely that

Pm(z) ∼=
√
G′′(z̄)
2πm

exp[−mG(z)]. (23)

In order to test the validity of (23) we divided the possible values ofm into bins of
width 0.5 and examined the statistics ofz for windows in each bin(m− 0.5, m]. Figures 3
and 4 show respectively the computed meanz̄ and varianceσ 2 of z as a function ofm for
76 m 6 14.

The reasons for limiting our considerations to the range 76 m 6 14 are as follows.
For m < 7, the number of windows per bin drops below 100, and the computed statistics
become unreliable. On the other hand, form > 14 it is possible for the periodp = m/hT
of the window to exceed 40 because the entropyhT can be as low as(ln 2)/2 at the lower
endpoint of theC interval we consider. Also form near 14 the windows with width near
10−15 start to become significant in number; thus our limitations on the period and window
width begin to bias the statistics asm increases past 14.

From figure 3 we see that asm increases, the mean value does seem to be approaching
a value 1< z̄ < 1.1 which is independent ofm, in accordance with our hypothesis.
The predicted distribution also has the property that the varianceσ 2 should vary inversely
with m, and figure 4, though perhaps not conclusive, is consistent with the approximation
σ 2 ∼= 0.05/m.

In section 3 we estimated the uncertainty exponentα of the chaotic parameter setSc
in terms of the mean and standard deviation of the distribution forH, assuming thatG
is quadratic. Approximating the statistics ofH by those we measured forz, we plug the
valuesH̄ = 1.05± 0.05 andδ2 = 0.05± 0.02 into (21). The result isα = 0.51± 0.03,
which is in line with the prediction thatα is close to1

2.

Remark. Note that in [8] the set for which the uncertainty exponent is calculated is the
set ofC values yielding chaos, while in [7] it is the set ofC values that yield chaos and
are not in primary windows. (See the discussion of [7, 8] at the end of section 2) It is not
clear whether or not one should expect the sameα for these two sets. In our computation
of α we have used the set of [7]; that is, we considered only chaotic behaviour that is not
in a primary window. Since we also restricted consideration to the range ofC between the
merging point of the two-band chaotic attractor and the point of the final crisis (C = 2), our
choice is equivalent to consideringC values for which there is a one-piece chaotic attractor.

5. Discussion

For the quadratic map we have introduced the idea of a ‘normalized period’m = phT of a
periodic window, wherep is the period andhT is the topological entropy of the dynamics
in the window. Whereas windows with a given periodp have tremendous variation in
their widths, windows with similar values ofm have much greater uniformity in width.
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Specifically, (22) and (23) imply that for a givenm, the natural logarithm of the window
width has expected value near−2m and standard deviation proportional to

√
m. Thus

grouping the windows with common values ofm provides a useful means for measuring
the statistics of window widths. Further, the nature of these statistics allowed us to derive
in section 3 the uncertainty exponentα of the chaotic parameter set in terms of quantities
which are measurable from window data, and our results in section 4 agree with earlier
measurements which indicate thatα is in the vicinity of 1

2.
Though all of our analysis has concerned the quadratic map, we expect that similar

scaling results for window widths apply to other one-parameter families of one-dimensional
maps with a single quadratic maximum.
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